V2EX  ›  英汉词典
Enqueued related words: Seminorm, Locally Convex

Minkowski Functional

释义 Definition

Minkowski functional(闵可夫斯基泛函):在凸分析与泛函分析中,给定一个包含原点的集合 (C)(常取为凸、平衡/对称、吸收的集合),用来度量“把 (x) 缩放到落入 (C) 里所需的最小倍数”的函数,也称为规范函数/规(gauge)。常见定义为
[ p_C(x)=\inf{t>0:\ x\in tC}. ]
在适当条件下,它与范数密切相关(例如当 (C) 是单位球时,(p_C) 就是一种范数)。

发音 Pronunciation (IPA)

/mɪnˈkɔːfski fʌŋkˈʃənəl/

例句 Examples

The Minkowski functional tells us how much we need to scale a vector to fit into a set.
闵可夫斯基泛函告诉我们,需要把一个向量放大或缩小多少倍才能落入某个集合中。

In locally convex spaces, the Minkowski functional of a balanced, convex neighborhood of the origin generates a seminorm that helps define the topology.
在局部凸空间中,原点附近一个平衡且凸的邻域所对应的闵可夫斯基泛函会生成一个半范数,用来刻画该空间的拓扑。

词源 Etymology

Minkowski 来自数学家 Hermann Minkowski(赫尔曼·闵可夫斯基) 的姓氏,他在几何与数论等领域的工作影响深远;functional 源自 function(函数)加形容词后缀 -al,表示“与函数/泛函相关的”。该术语在凸几何与泛函分析语境中固定下来,用于指与集合相关联的一类“度量式”函数(规/规范函数)。

相关词 Related Words

文学与著作示例 Literary Works

  • Convex Analysis(R. Tyrrell Rockafellar)——在讨论凸集、支撑函数与对偶性时常引入 Minkowski functional(gauge)。
  • Topological Vector Spaces(H.H. Schaefer & M.P. Wolff)——在局部凸空间与由半范数族生成拓扑的章节中使用该概念。
  • Functional Analysis(Walter Rudin)——在拓扑向量空间/局部凸结构相关内容中会出现或与之等价的“gauge/闵可夫斯基泛函”表述。
关于   ·   帮助文档   ·   自助推广系统   ·   博客   ·   API   ·   FAQ   ·   Solana   ·   1915 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 26ms · UTC 03:21 · PVG 11:21 · LAX 19:21 · JFK 22:21
♥ Do have faith in what you're doing.