quadric(四次曲面/二次曲面):在数学中,指由二次方程描述的曲线或曲面,常见于解析几何与代数几何中,例如球面、椭球面、抛物面、双曲面等。(在更高维也可指“二次超曲面”。)
/ˈkwɑːdrɪk/
A sphere is a quadric surface.
球面是一种二次曲面。
In analytic geometry, many shapes—like ellipsoids and hyperboloids—can be described as quadrics defined by second-degree equations.
在解析几何中,许多形状(如椭球面和双曲面)都可以看作由二次方程定义的二次曲面。
来自拉丁语 quadr-(“四”)相关词根,经过新拉丁语/科学拉丁语的构词传统形成 quadric。在数学语境里,它与“二次(second-degree)”密切相关:所谓 quadric 通常指由二次项构成的方程所定义的几何对象。