V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
abcbuzhiming
V2EX  ›  数学

线性代数想认真学习的话该如何入手

  •  
  •   abcbuzhiming · 2019-06-12 23:30:26 +08:00 · 23990 次点击
    这是一个创建于 2047 天前的主题,其中的信息可能已经有所发展或是发生改变。
    大学的时候数学类没学好,现在想玩玩 AI 方向,连门都进不去。B 站的那个“线性代数的本质”我已经看过了,但是我感觉这教程可能不太适合我,我看到一半的时候,疑问反而变多了,尤其是有一种强烈的“虽然你说线性代数就是这样的,但是为什么线性代数是这样的呢”这种奇怪的疑问
    18 条回复    2019-10-14 16:28:03 +08:00
    Jirajine
        1
    Jirajine  
       2019-06-12 23:44:00 +08:00 via Android   ❤️ 1
    supertiny
        2
    supertiny  
       2019-06-12 23:49:58 +08:00   ❤️ 1
    @Jirajine 这个不好,太繁杂了。

    建议看 S Lang 的 Introduction to Linear Algebra,只讲理论框架。学线性代数应该是很多人第一次接触现代数学,重要的是理解抽象的概念,而不是学一大堆行列式。
    abcbuzhiming
        3
    abcbuzhiming  
    OP
       2019-06-12 23:58:51 +08:00
    @supertiny
    @Jirajine
    谢谢两位,不过你们说的这个有没有翻译版的?听力没有好到能够直接听原声就能听懂
    gazhang
        4
    gazhang  
       2019-06-13 00:00:42 +08:00 via Android
    有一个叫做马同学高等数学的公众号讲的还挺简单易懂的。
    supertiny
        5
    supertiny  
       2019-06-13 00:16:38 +08:00
    @abcbuzhiming S Lang 的 Introduction to Linear Algebra 是本书。
    trait
        6
    trait  
       2019-06-13 00:23:44 +08:00 via iPhone
    先看下 3blue...记不全名了那个 YouTube 线代系列,b 站有官方翻译
    不要碰国内教科书,都是垃圾和邪门歪道
    geelaw
        7
    geelaw  
       2019-06-13 06:03:20 +08:00 via iPhone
    王萼芳的《高等代数》挺好的(虽然有些部分我不是很喜欢)
    carlclone
        8
    carlclone  
       2019-06-13 07:06:38 +08:00 via Android
    慕课网刘宇波老师
    fanyange
        9
    fanyange  
       2019-06-13 10:42:15 +08:00   ❤️ 1
    1 楼和 2 楼的回复说的其实是一回事,一个是课,一个是书,讲授者都是 Gilbert Strange 老爷子,配套学习最佳。至于中文版,网易公开课这些平台上搜「麻省理工 线性代数」就是了,一模一样。
    YouTube 或者 B 站上的「线性代数的本质」和所谓 3Blue1Brown、三蓝一棕视频也是一回事,下面的回复也不要重复了。
    所以 LZ 知道怎么入手了吧,学习线性代数这两个资源已经足够了。我和你一样,当初过了两遍 3Blue1Brown 还是感觉不够,这个没办法,人类的学习和机器学习一样是需要大量的例子来强化的,如果你只是看,没有相关的例题和习题帮你加深印象、巩固和总结,就会存在「虽然原理懂了,但感觉没有掌握」的感觉。这一点教科书无可替代。
    abcbuzhiming
        10
    abcbuzhiming  
    OP
       2019-06-13 11:29:08 +08:00
    @fanyange 有好的教科书+练习题可以推荐吗?最好是中文的,谢谢
    fanyange
        11
    fanyange  
       2019-06-13 13:07:26 +08:00 via iPhone
    @abcbuzhiming 有翻译的教科书有《线性代数及其应用》《线性代数应该这样学》,都是评分很高的,后者建议有了一定基础再看,作者也说是学习线性代数的第二本书。
    azuki
        12
    azuki  
       2019-06-14 19:33:53 +08:00 via Android
    @fanyange 是这样的,1 楼的是我的入门课,根本不是以一大堆行列式开头的。
    这和国内教材不一样。
    swordspoet
        13
    swordspoet  
       2019-06-20 08:08:35 +08:00 via iPhone
    考研的时候是接触张伟老师的线性代数,感觉讲得很好,酣畅淋漓,你可以试试看,有助于你形成机械记忆。
    necomancer
        14
    necomancer  
       2019-06-25 11:21:06 +08:00
    我刚回复过另一个帖子:去看 SUMS 系列的 Linear algebra 和 Further Linear algebra,基本够用了。想更进一步去看 GTM 系列的线性代数。离散数学看 Rosen 的就行。速成的话看懂神马是厄密矩阵,本征值,本征值的几何意义,SVD 和对角化的区别,优化问题的应用和张量代数,去捅咕明白 numpy.einsum 这个函数,日常各种操作够用。有点基础了有本书叫《线性代数应该这样学》,水平很高。一般这书内容大致了解也就算了解线性代数了,能看通透那就很厉害了。
    zzh1823
        15
    zzh1823  
       2019-06-26 19:49:16 +08:00
    @necomancer 大赞,LADR 真神作
    terencelau
        16
    terencelau  
       2019-07-04 10:00:01 +08:00
    three blue one brown 的 linear algebra 系列是通过几何的方式入门的,但课比较短,仅能当作入门;然后 MIT 的 Linear Algebra 就讲的十分详细,毕竟是一个学期的课。国内的书(课本)别碰,都是为了考试做题的。书籍的话推荐 Springer 的 Undergraduate Text in Mathematics: Linear Algebra 和 《线性代数的几何意义》 这两本书。
    g9g9
        17
    g9g9  
       2019-08-02 15:09:21 +08:00
    学代数不要给它带上物理的背景,接受抽象是最重要的
    kZime
        18
    kZime  
       2019-10-14 16:28:03 +08:00 via Android
    @trait 3 蓝 1 棕,3blue1brown,结合头像就记住了😁
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1341 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 21ms · UTC 17:52 · PVG 01:52 · LAX 09:52 · JFK 12:52
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.